通讯与电子展会
我来教教你扑克牌和数学规律(2023已更新/今日/知乎)
2023-05-02 02:00  浏览:51
日期:2023-04-04~2026-04-04
城市:中国
地址:我来教教你扑克牌和数学规律(2023已更新/今日/知乎)
展馆:我来教教你扑克牌和数学规律(2023已更新/今日/知乎)
主办:我来教教你扑克牌和数学规律(2023已更新/今日/知乎)
6分钟前

今天给各位分享扑克牌和数学规律的知识,其中也会对扑克牌和数学规律有数学公式的进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

小学数学24点扑克牌游戏规则是什么?

小学数学24点扑克牌游戏规则如下。

一、基本规则

一副牌中抽去大小王剩下52张,(如果初练也可只用1-10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9-8)×8×3或(9-8÷8)×3等。

算24点作为一种扑克牌智力游戏,还应注意计算中的技巧问题。计算时,我们不可能把牌面上的4个数的不同组合形式-去试,更不能瞎碰乱凑。

二、技巧

1、利用3×8=24、4×6=24求解。

把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。如3、3、6、10可组成(10-6÷3)×3=24等。又如2、3、3、7可组成(7+3-2)×3=24等。实践证明,这种方法是利用率最大、命中率最高的一种方法。

2、利用0、11的运算特性求解。

如3、4、4、8可组成3×8+4-4=24等。又如4、5、J、K可组成11×(5-4)+13=24等。

扑克牌中蕴含了哪些有趣的数学知识?

扑克牌是一种大众娱乐工具。相传早在秦末楚汉相争时期,大将军韩信为了缓解士兵的思乡之愁,发明了一种纸牌 游戏,因为牌面只有树叶大小,所以被称为“叶子戏”,后来发展成为现在的54张扑克牌。

扑克牌的54张模式解释起来也非常奇妙:

大王代表太阳、小王代表月亮,其余52张牌代表一年中的52个星期;

红桃、方块、梅花、黑桃四种花色分别象征着春、夏、秋、冬四个季节;

每种花色有13张牌,表示每个季节有13个星期。

如果把J、Q、K当作11、12、13点,大王、小王为半点,一副扑克牌的总点数恰好是365点。而闰年把大、小王各算为1点,共366点。

专家普遍认为,以上解释并非巧合,因为扑克牌的设计和发明与星相、占卜以及天文、历法有着千丝万缕的联系。但在扑克牌中包含着很多的数学知识,你知道吗?

一、扑克牌中的对称图形

扑克牌中有红桃、方块、梅花、黑桃四种花色,而每一种花色都是一个轴对称图形,其中方块不仅是轴对称图形,而且是中心对称图形,正是因为它们具有了这些对称的特征,所以才有了绝妙的数学试题。

如2007年甘肃省白银等7市新课程数学试题第4小题:

4张扑克牌如图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左数起是()

A.第一张 B.第二张 C.第三张 D.第四张

这个题设计新颖,构思精巧,可谓独具匠心,通过扑克牌的操作,探索图形中存在的变化规律,让学生亲身经历知识的发生,发展及其应用过程,学生观察(1)(2)两图会发现它们没有任何变化,但试题的设置精巧在只有旋转方块9,才能有(1)、(2)两图的结果。试题有效考查了学生对中心对称这一知识点的理解和掌握情况,同时也培养了学生发现问题和解决问题的能力。

二、扑克牌中的计算问题

有一种“二十四点”的游戏,其游戏规则是这样的:从一付扑克牌(去掉大、小王)中任意抽取四张牌,其中A,2,3,…,K依次代表1,2,3,…,13,根据牌面上的数字进行加、减、乘、除四则运算(可以使用括号,但每张牌不重复使用),使运算结果为24.

如,任意从一付扑克牌(去掉大、小王)中抽取四张牌,其中A,2,3,…,K依次代表1,2,3,…,13,红色扑克牌、黑桃和方块代表正数,草花代表负数. 小聪同学抽到的四张牌是红桃3、黑桃4、方块10和草花6,请你帮助小聪将这四个有理数(每个数只用一次)进行加、减、乘、除四则运算(可以使用括号),列出三种不同的算式,使其结果为24。本游戏的实质是将四个有理数3,4,10,-6,运用上述规则写出三种不同的算式,使其结果为24。比如10-4-3×(-6)=24;4-(-6)÷3×10;你还能写出一种吗?

通过扑克牌中“二十四点”的计算,可以培养学生学习有理数运算的兴趣,让学生在一种愉悦的状态下,使枯燥乏味的有理数运算焕发出生命的活力,同时,也能让学生在游戏中增长知识,让学生的思维能力得到发散,从而更能使学生的计算能力得到进一步的升华。这类试题不仅使计算教学在算理、算法、技能这三方面得到和谐的发展和提高,而且也体现了新课程的标准,真正推崇扎实有效、尊重学生个性发展的理性计算教学。

三、扑克牌中的有序排列

每一副新的扑克牌都是按照一定的顺序排列的,即第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,…,J,Q,K的顺序排列。如果将这样的扑克牌按一定的规则进行,那么就可以得到一个很好的命题。

如,2005年全国初中数学竞赛试题第8小题:

有两副扑克牌,每付的排列顺序是:第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,…,J,Q,K的顺序排列。某人把按上述排列的两副扑克牌上下叠放在一起,然后从上到下把第一张丢去,把第二张放在最底层,再把第三张丢去,把第四张放在底层,……如此下去,直至最后只剩下一张牌,则所剩的这张牌是_________。刚看试题,觉得无法下手,但是,我们从简单两张扑克牌入手,按照规则就可以发现剩下的是第二张;如果是四张扑克牌,按照规则就可以发现剩下的是第二张;如果是八张扑克牌,按照规则就可以发现剩下的是第八张;那么我们会发现,扑克牌的张数为2,22,23,…,2n,按照上述操作方法,剩下的一张牌就是这些牌的最后一张。例如,手中只有64张牌,按照上述操作方法,最后只剩下第64张。现在手中有108张牌,多出108-64=44(张),如果按照上述操作方法,先丢去44张,此时手中恰好有64张牌,而按原来顺序的第88张牌恰好放在手中牌的最低层。而88-54-2-26=6,按照两副牌的花色顺序,所剩的最后一张是第二副牌中的方块6。奇妙的构想,形成了绝妙的试题,在这个试题中,很好地运用了扑克牌的有序排列特点,渗透了从一般到特殊的数学思想,使学生在扑克牌的兴趣中,让自己的创造性思维得到了充分的发展。

远在古代周朝初,传说年幼的周成王在宫庭中与弟弟叔虞就曾玩一种“削桐叶为圭”的游戏。那时尚未发明纸张,故以树叶为玩具。唐、宋时代,中国的祖先发明了一种纸牌,既可游戏,亦可赌博,称“叶子戏”。又有传说大将军韩信为了使士兵减少乡愁,在军中发明了一种供娱乐用的纸牌,因其只有树叶大小,故称之为叶子戏。上自文人学士,下至平民百姓,均乐此不疲。到了明、清时期,“叶子戏”纸牌,每副有40张,分4类。牌上图案,品目甚多,有人物、飞禽、走兽、花、鸟、虫、鱼等。清末至民国后,纸牌长约8厘米,宽约2厘米,人们称纸牌。建国前后,潮汕民间还盛行纸牌赌博,玩法由简单的排列式而逐渐趋多种多样,每张纸牌上绘印1至10点的数码,或绘印上象棋上的“帅、仕、相、车等32字,分红、青、黑、白4色,共64张,作为排列式赌博。2至4人共赌。

大约公元13世纪,这种纸牌戏,传到欧洲,经过一段时期,纸牌演变为卡片,逐渐形成了普遍的扑克牌,成为国际性纸牌。最早扑克牌张数,各地不一。意大利的每副78张,德国的每副32张,西班牙的每副40张,法国的每副52张。以后成为国际性扑克牌每副52张,再加上”丑角“(Joker,亦称大小王或大小鬼)两张,共54张。至此,扑克牌上花色、点数及k、q、j图案,基本上定型了。

扑克牌分四种花色,分别是黑桃、红桃、方角、梅花。四种花色有不同称呼。法国人称“矛、心、方形、丁香叶”,德国人称“叶、心、铃、橡树果”,意大利人称为“剑、硬币、棍、酒杯”。

后来西方人根据天文学中的历法,把这种纸牌游戏卡片统一内容,定为54张,四种花色。这样,经过长久时间的演变,逐渐趋于一致。

扑克牌玩法有很多种,最普通的有桥牌、打百分、钓红点、拍百、21点、24点等,不一而足。由于扑克牌的牌数符合天文学的历法,故有扑克是历法的缩影的说法,理由是:

扑克牌54张,表示一年有52个星期,两张副牌大猫代表太阳,小猫代表月亮;桃、心、方、梅表示春、夏、秋、冬四季。红色牌代表白昼,黑色牌代表黑夜;每一季13个星期与扑克每一花色的牌数正好是13张,,52张牌的点数相加是364,再加上小猫的一点,是365,与一般年份天数相同;如果再加大猫的一点,那就正好是闰年的天数。扑克牌的K、Q、J共有12张,既表示一年有12个月,又表示太阳在一年中经过12个星座。

扑克牌中蕴含了哪些有趣的数学知识

这个好理解

 扑克牌是一种大众娱乐工具。相传早在秦末楚汉相争时期,大将军韩信为了缓解士兵的思乡之愁,发明了一种纸牌 游戏,因为牌面只有树叶大小,所以被称为“叶子戏”,后来发展成为现在的54张扑克牌。

扑克牌的54张模式解释起来也非常奇妙:

大王代表太阳、小王代表月亮,其余52张牌代表一年中的52个星期;

红桃、方块、梅花、黑桃四种花色分别象征着春、夏、秋、冬四个季节;

每种花色有13张牌,表示每个季节有13个星期。

如果把J、Q、K当作11、12、13点,大王、小王为半点,一副扑克牌的总点数恰好是365点。而闰年把大、小王各算为1点,共366点。

专家普遍认为,以上解释并非巧合,因为扑克牌的设计和发明与星相、占卜以及天文、历法有着千丝万缕的联系。但在扑克牌中包含着很多的数学知识,你知道吗?

一、扑克牌中的对称图形

扑克牌中有红桃、方块、梅花、黑桃四种花色,而每一种花色都是一个轴对称图形,其中方块不仅是轴对称图形,而且是中心对称图形,正是因为它们具有了这些对称的特征,所以才有了绝妙的数学试题。

如2007年甘肃省白银等7市新课程数学试题第4小题:

4张扑克牌如图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左数起是()

A.第一张 B.第二张 C.第三张 D.第四张

这个题设计新颖,构思精巧,可谓独具匠心,通过扑克牌的操作,探索图形中存在的变化规律,让学生亲身经历知识的发生,发展及其应用过程,学生观察(1)(2)两图会发现它们没有任何变化,但试题的设置精巧在只有旋转方块9,才能有(1)、(2)两图的结果。试题有效考查了学生对中心对称这一知识点的理解和掌握情况,同时也培养了学生发现问题和解决问题的能力。

二、扑克牌中的计算问题

有一种“二十四点”的游戏,其游戏规则是这样的:从一付扑克牌(去掉大、小王)中任意抽取四张牌,其中A,2,3,…,K依次代表1,2,3,…,13,根据牌面上的数字进行加、减、乘、除四则运算(可以使用括号,但每张牌不重复使用),使运算结果为24.

如,任意从一付扑克牌(去掉大、小王)中抽取四张牌,其中A,2,3,…,K依次代表1,2,3,…,13,红色扑克牌、黑桃和方块代表正数,草花代表负数. 小聪同学抽到的四张牌是红桃3、黑桃4、方块10和草花6,请你帮助小聪将这四个有理数(每个数只用一次)进行加、减、乘、除四则运算(可以使用括号),列出三种不同的算式,使其结果为24。本游戏的实质是将四个有理数3,4,10,-6,运用上述规则写出三种不同的算式,使其结果为24。比如10-4-3×(-6)=24;4-(-6)÷3×10;你还能写出一种吗?

通过扑克牌中“二十四点”的计算,可以培养学生学习有理数运算的兴趣,让学生在一种愉悦的状态下,使枯燥乏味的有理数运算焕发出生命的活力,同时,也能让学生在游戏中增长知识,让学生的思维能力得到发散,从而更能使学生的计算能力得到进一步的升华。这类试题不仅使计算教学在算理、算法、技能这三方面得到和谐的发展和提高,而且也体现了新课程的标准,真正推崇扎实有效、尊重学生个性发展的理性计算教学。

三、扑克牌中的有序排列

每一副新的扑克牌都是按照一定的顺序排列的,即第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,…,J,Q,K的顺序排列。如果将这样的扑克牌按一定的规则进行,那么就可以得到一个很好的命题。

如,2005年全国初中数学竞赛试题第8小题:

有两副扑克牌,每付的排列顺序是:第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,…,J,Q,K的顺序排列。某人把按上述排列的两副扑克牌上下叠放在一起,然后从上到下把第一张丢去,把第二张放在最底层,再把第三张丢去,把第四张放在底层,……如此下去,直至最后只剩下一张牌,则所剩的这张牌是_________。刚看试题,觉得无法下手,但是,我们从简单两张扑克牌入手,按照规则就可以发现剩下的是第二张;如果是四张扑克牌,按照规则就可以发现剩下的是第二张;如果是八张扑克牌,按照规则就可以发现剩下的是第八张;那么我们会发现,扑克牌的张数为2,22,23,…,2n,按照上述操作方法,剩下的一张牌就是这些牌的最后一张。例如,手中只有64张牌,按照上述操作方法,最后只剩下第64张。现在手中有108张牌,多出108-64=44(张),如果按照上述操作方法,先丢去44张,此时手中恰好有64张牌,而按原来顺序的第88张牌恰好放在手中牌的最低层。而88-54-2-26=6,按照两副牌的花色顺序,所剩的最后一张是第二副牌中的方块6。奇妙的构想,形成了绝妙的试题,在这个试题中,很好地运用了扑克牌的有序排列特点,渗透了从一般到特殊的数学思想,使学生在扑克牌的兴趣中,让自己的创造性思维得到了充分的发展。 

扑克牌是一种古老而又非常普及的游戏工具,其不同牌之间的组合的随机性不但具有挑战性,而且包含有很多的有趣数学问题,通过扑克牌的游戏激发学生对数学的学习兴趣,培养学生的逻辑思维能力和推理能力。

关于扑克牌和数学规律和扑克牌和数学规律有数学公式的的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

 
联系方式
姓名:李彬
电话:23440221
手机:13234422153
邮件:23440221@qq.com
QQ:121799
打赏
发表评论
0评